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1. Problem at Stake and Methodology

We observe a sample X1, . . . , Xn ∼i.i.d. P in Rd, and we are interested in
estimating the support S ⊂ Rd of P , that is, the smallest closed set that
contains all the mass of P ,

S = suppP =
⋂

P (C)=1

C⊂Rd

C.

Throughout this chapter, we will always assume that S is compact. Assume
that P is absolutely continuous with respect to the Lebesgue measure λ on
Rd, and denote by f : Rd → R>0 its density. Under suitable assumptions on
f — which is only defined up to a λ-negligible set —, estimating S will boil
down to estimating the support of f , defined by

supp f = {x ∈ Rd|f(x) > 0},

which is why this problem is often called density support estimation.

Proposition 1.1. If a version f = dP/dλ of the density of P is continuous
on its support supp f , then suppP = supp f .

Proof. As (suppP )c contains no mass and is open, we have (suppP )c ={
x ∈ Rd|∃ε > 0, P (B(x, ε)) = 0

}
. Hence,

suppP =
{
x ∈ Rd|∀ε > 0, P (B(x, ε)) > 0

}
=

{
x ∈ Rd|∀ε > 0,

∫
B(x,ε)

fdλ > 0

}
.
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As a result, if x ∈ suppP , then for all ε > 0, there exists xε ∈ B(x, ε) such
that f(xε) > 0 and in particular, x = limε→0 xε ∈ supp f .

Conversely, any x ∈ supp f writes as a limit x = limε→0 xε of points
xε ∈ Rd such that f(xε) > 0. But for all ε > 0, by continuity of f at
xε ∈ supp f ,

∫
B(xε,δ)

fdλ > 0 for all δ > 0, so that xε ∈ suppP . By

closedness of suppP , we get x ∈ suppP . �

Throughout this chapter, we will always assume that S = suppP is com-
pact.

1.1. A Direct Plugin. A first idea could be to estimate S by the plugin

Ŝ0 =
{
f̂n > 0

}
, where f̂n is a kernel density estimator,

f̂n(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
,

h = hn is a properly chosen sequence of bandwidths, and K : Rd → R is
a kernel function. The estimator Ŝ0 is a very simple and natural choice,
but it presents a major limitation. Indeed, observe that Ŝ0 is compact if
and only if suppK is compact. Hence, we are restricted to using compact-
supported kernels K. In the worst case scenario, such as for the Gaussian
kernel K(x) = exp(−‖x‖2 /2)/(2π)d/2, suppK = Rd, so that Ŝ0 is always
Rd.

Remark 1.2. If suppK is bounded and K > 0, the estimator Ŝ0 = {f̂ > 0}
is a finite union of rescaled translations of suppK. That is,

Ŝ0 =

n⋃
i=1

suppK ((· −Xi)/h) =

n⋃
i=1

Xi + h suppK.

When suppK = B(0, 1), this estimator is known as the Devroye-Wise esti-
mator.

1.2. Free Thresholding. To overcome the above limitation, we will con-
sider a modified version of Ŝ0 by introducing a threshold parameter, in
addition to the bandwidth parameter h of f̂ . Namely, we will estimate S
with

Ŝ = Ŝ(fn, αn) = {fn > αn},
where fn is an estimator of the density f (usually, but not necessarily, of

kernel type: in this case we will denote it by f̂n instead of fn) and αn is a
sequence converging to zero.

Remark 1.3. – In contrast to its target supp f = {x ∈ Rd|f(x) > 0}, note

that the chosen estimator Ŝ = {fn > αn} has no reason to be closed.

Even Ŝ = {fn > αn} might not be closed, since K is not assumed to be
continuous: for instance, the classical rectangular kernel K(x) = 1

21[−1,1]
yields discontinuous f̂n. All the results below would also hold for the
estimators {fn > αn} and {fn > αn}, but with extra technicalities in the
proofs and without any substantial benefit. We chose to omit this feature
and keep the simpler estimator Ŝ = {fn > αn}.
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– When K = cd1B(0,1), one easily sees that Ŝ0 = {f̂ > 0} = {f̂ > 1/n}, so

that Ŝ(f̂n, αn) is a generalization of Ŝ0.

2. A L1 Loss for Set Estimation

As the parameter of interest S is a subset of Rd, we first need to define the
notion of proximity to analyze the performance of the estimates. In other
words, we shall formalize what “Ŝ is close to S” means. A standard choice
comes through the Lebesgue measure-based loss defined below. Throughout
this chapter, λ will denote the Lebesgue measure on Rd.

Definition 2.1 (L1 Distance). Given two measurable sets A,B ⊂ Rd, the
L1 distance between them is defined by

dλ(A,B) = ‖1A − 1B‖L1(dλ) ,

where 1A and 1B stand for the indicator functions of A and B.

Remark 2.2. – As a direct consequence of the definition, dλ is a pseudo-
distance: it is symmetric, satisfies the triangle inequality, and dλ(A,B) =
0 if and only if A and B differ by a Lebesgue-negligible set.

– The preceding definition uses the functional representation of sets given
by K 7→ 1K to provide a distance between sets.

A more geometric formulation of dλ stands as follows

Proposition 2.3 (Measure of the Symmetric Difference). For all measur-
able sets A,B ⊂ Rd,

dλ(A,B) = λ (A4B) ,

where A4B = (A∩Bc)∪(B∩Ac) = (A\B)∪(B \A) denotes the symmetric
difference of A and B.

Proof of Proposition 2.3. Follows from the identity |1A − 1B| = 1A4B. �

A

B

A4B

Figure 1. The symmetric difference A4B between two
subsets A and B of the plane. Its surface corresponds to
dλ(A,B).

Remark 2.4. – The above proposition explains why dλ is often called mea-
sure of the symmetric difference.

– One could take any Borel measure µ and define a pseudo-distance dµ
accordingly. It would have the same properties as dλ. In this introductory
chapter, we chose to focus on the Lebesgue measure for simplicity.
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3. A Universal Consistence Result

We first prove a theorem which provides a result on consistency for the
estimator (1.2) where fn is a general density estimate.

Theorem 3.1 (Cuevas, Fraiman). Let f be a density on Rd with a compact
support S. Given a sequence (fn)n>1 of density estimators, define an associ-

ated sequence of support estimators Ŝ = {fn > αn}, where αn ↘ 0. Assume
that

(i) λ(E0) = 0, where E0 = {x ∈ S|f(x) = 0};
(ii) α−1n

∫
|fn − f |dλ −−−→

n→∞
0 a.s. (resp. in probability).

Then, dλ(S, Ŝ) −−−→
n→∞

0 a.s (resp. in probability).

Remark 3.2 (On Theorem 3.1). – Condition (i) excludes pathological cases
where the set {f > 0} is far away from the support S. For instance, there
exist open sets A ⊂ [0, 1] dense in [0, 1] such that 0 < λ(A) < 1, such as
the complement in [0, 1] of a Cantor-type set of positive measure. Let f
be the uniform density constant on A and null on Ac. The support of f
is [0, 1] and λ(E0) = 1− λ(A) > 0.

– Condition (ii) formalizes the fact that plugged in estimators fn should
converge fast enough compared to the threshold sequence αn.

Proof of Theorem 3.1. Define An = {x ∈ Rd||fn(x)− f(x)| > αn}. Decom-

posing Ŝ4S with respect to An and taking into account λ(Ŝ ∩Sc ∩Acn) = 0

and Ŝc ∩ S ∩Acn ⊂ {f 6 2αn} ∩ S, we get

dλ(S, Ŝ) = λ
(

(Ŝ4S) ∩An
)

+ λ
(

(Ŝ4S) ∩Acn
)

6 λ(An) + λ(S ∩ Ŝc ∩Acn) + λ(Ŝ ∩ Sc ∩Acn)

6 λ(An) + λ({f 6 2αn} ∩ S).

From (i), λ({f 6 2αn} ∩ S) ↘ 0 by monotone convergence, since {f 6
2αn} ∩ S ↘ E0. Furthermore, from Markov inequality,

λ(An) = λ({|fn − f | > αn}) 6 α−1n
∫
|fn − f |dλ,

so that λ(An) −−−→
n→∞

0 a.s. (resp. in probability) from (ii), which concludes

the proof. �

Remark 3.3. – In the case where fn = f̂n is a sequence of d-variate kernel
estimators, assumption (ii) would typically be fulfilled (in probability) by

a sequence αn of type α−1n = o(n
2k

2k+d ) if f is of class Ck.
– The sequence an = λ({f < 2αn}∩S) depends directly on the way in which
f “decreases to the ground”. In the sharp cases where f is bounded away
from zero on its support, we have an = 0 eventually. This is the most
favorable situation. In general, the slower an decreases to zero, the worse
the convergence rate fn one can get. This is fairly intuitive, since a slow
decrease of an is associated with the existence of wide “empty” areas of
low probability, where f is very small, which will be underrepresented in
the sample.
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4. Convergence Rates Under Shape Restrictions

We will establish here a rate of convergence, on average, for the estimation
of the support S. It holds in the case where the auxiliary density estimate
fn is of kernel type, under some shape restrictions on the support S.

4.1. Distance Function and Offset. Let us fix a couple pieces of notation
to be used in the sequel.

Definition 4.1 (Distance Function). For a set K ⊂ Rd, the distance func-
tion to K, denoted by dK , is defined by defined by

dK : x ∈ Rd 7→ min
p∈K
‖x− p‖ .

Remark 4.2. Since {x ∈ Rd|dK(x) = 0} = K, it is clear that dK fully
characterizes K as soon as it is closed. That is, K 7→ dK is one-to-one
over the set of closed sets. Also, one easily sees that dK is 1-Lipschitz. As
a result, K 7→ dK provides a functional embedding of the set of compact
subsets of Rd. This parallels the representation K 7→ 1K that we used to
define dλ (see Definition 2.1). We will use this fact in upcoming chapters
to define another notion of proximity between sets: the so-called Hausdorff
distance.

Definition 4.3 (Offset). The r-offset of K, also called tubular neighborhood
in geometry, is the setKr of points at distance at most r ofK, or equivalently
the sublevel set

Kr := {x ∈ Rd|dK(x) 6 r}.
4.2. Covering and Packing Numbers. A geometric condition which will
appear in a natural way has to do with the volume increase from S to Sh,
as measured by the blowing-up function

∆(S, h) := λ(Sh)− λ(S).

This function provides information about the complexity of the shape S:
the simpler the structure of S, the smaller ∆(S, h). Conversely, as depicted

in Figure 2, the wilder ∂S = S \ S̊, the larger ∆(S, h) can get. A typical
behavior, as h→ 0, is ∆(S, h) = O(h). As we will see later on, it is the case
when the boundary ∂S is not too massive (see Lemma 4.6). To measure
massiveness of ∂S, we will use packing and covering numbers. That is,
roughly speaking, numbers of balls optimally displayed at some scale r in
∂S.

A r-covering of K ⊂ Rd is a subset X = {x1, . . . , xk} ⊂ K such that for all
x ∈ K, dX (x) 6 r. A r-packing of K is a subset Y = {y1, . . . , yk} ⊂ K such
that for all y, y′ ∈ Y, B(y, r) ∩ B(y′, r) = ∅ (or equivalently ‖y′ − y‖ > 2r).

Definition 4.4 (Covering and Packing numbers). For K ⊂ Rd and r > 0,
the covering number cv(K, r) is the minimum number of balls of radius r
that are necessary to cover K:

cv(K, r) = min {k > 0 | there exists a r-covering of cardinality k} .
The packing number pk(K, r) is the maximum number of disjoint balls of
radius r that can be packed in K:

pk(K, r) = max {k > 0 | there exists a r-packing of cardinality k} .
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Figure 2. A shape S with wild boundary ∂S allows for
arbitrarily large ∆(S, h) = λ(Sh \ S). Here, the so-called
Sierpinski carpet.

For a given space K, covering and packing numbers usually have the same
order of magnitude. Furthermore, this order of magnitude informs us about
a notion of intrinsic dimension of K. Let us formalize this through two
important properties of covering and packing numbers.

Proposition 4.5. Let K ⊂ Rd be a bounded subset.

(i) For all r > 0,

pk(K, 2r) 6 cv(K, 2r) 6 pk(K, r).

(ii) For all r > 0,

pk(K, r) 6
λ(Kr)

λ(B(0, r))
.

In particular,

pk(K, r) 6

(
1 +

diamK

r

)d
.

(iii) For all r > 0,

cv(B(0, 1), r) >

(
1

r

)d
.

Proof. (i) For the left-hand side inequality, notice that if K is covered by
a family of balls of radius 2r, each of these balls contains at most one
point of a maximal packing Y at scale 2r. Conversely, the right-hand side
inequality follows from the fact that a maximal r-packing Y is always a
2r-covering. If it was not the case, one could add a point x0 such that
dY(x0) > 2r, which is impossible by maximality of Y.
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(ii) Let Y = {y1, . . . , yk} ⊂ K be a r-packing of K. From the inclusion
∪y∈YB(y, r) ⊂ Kr and the disjointness of B(y, r) and B(y′, r) for all
y 6= y′ ∈ Y, we get ∑

y∈Y
λ(B(y, r)) 6 λ(Kr),

which rewrites as |Y| 6 λ(Kr)/λ(B(0, r)) by invariance of the Lebesgue
measure under translations, and yields the first claim.

For the second one, Jung’s Theorem [Fed69, Theorem 2.10.41] asserts
that K is contained in a (unique) closed ball with (minimal) radius at

most
√

d
2d+1 diamK. As a result, denoting by ωd = λ(B(0, 1)), we get

λ(Kr)

λ(B(0, r))
6
ωd

(√
d

2d+1 diamK + r
)d

ωdrd
6

(
1 +

diamK

r

)d
.

(iii) If X = {x1, . . . , xk} is an ε-covering of B(0, 1), then

B(0, 1) ⊂ ∪ki=1B(xi, r),

so

λ(B(0, 1)) 6 kλB(0, r) = krdλ(B(0, 1)),

so that k > 1/rd.
�

Let us come back to the behavior of ∆(S, h) as h→ 0, when the boundary

∂S = S \ S̊ of S has a controlled covering number.

Lemma 4.6. Let S ⊂ Rd be closed. Assume that there exists r0 > 0 and
C > 0 such that for all r ∈ (0, r0), cv(∂S, r) 6 C/rd−1. Then for all
r ∈ (0, r0),

∆(S, r) := λ(Sr)− λ(S) 6 C ′r,

for some C ′ > 0.

Proof of Lemma 4.6. Let us first prove that Sr \ S ⊂ (∂S)r. To this aim,
take z ∈ Sr \ S and an associated x ∈ S such that ‖z − x‖ 6 r. As the
segment [x, z] is connected and intersects both S and Sc, it must intersect
its boundary ∂S (lemme de passage des douanes). Therefore, there exists
x′ ∈ [x, z] ∩ ∂S, which means that d∂S(z) 6 ‖z − x′‖ 6 r, and hence that
z ∈ (∂S)r.

Now, let X = {x1, . . . , xN} ⊂ ∂S be a minimal covering of ∂S of radius
r, i.e. N = cv(∂S, r). From the previous point we can write

∆(S, r) = λ(Sr \ S) 6 λ((∂S)r)

6 λ
((
∪Nj=1B(xi, r)

)r)
= λ

(
∪Nj=1B(xi, 2r)

)
6

N∑
j=1

λ(B(xi, 2r)) = Nωd(2r)
d 6 2dCωdr,
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where ωd = λ(B(0, 1)) stands for the volume of the unit d-dimensional Eu-
clidean ball. �

Another notion of set regularity that we will use is the standardness. The
intuitive idea is to exclude some pathological sets, such as those having
arbitrarily sharp peaks.

Definition 4.7 (Standard set). A bounded set S ⊂ Rd is said to be standard
if for every r0 > 0, there exists A ∈ (0, 1) such that for all x ∈ S and
r ∈ (0, r0),

λ (S ∩ B(x, r)) > Aλ (B(x, r)) = ωdAr
d,

where ωd = λ(B(0, 1)).

Remark 4.8. – This notion is also known as the inner cone condition in
the PDE literature.

(a) A regular set. (b) Another regular set. (c) Not a regular set.

Figure 3. Illustrating the notion of regularity of a set.
These examples show that it prevents sets to have to sharp
outwards peaks, but still allows for inwards ones.

Theorem 4.9 ([CF97]). Let Ŝ = {f̂n > αn} with αn → 0, and f̂n a kernel
density estimator with kernel K. Assume that:

(i) K fulfills c11B(0,r1) 6 K 6 c21B(0,r2), for some constants c1, c2 > 0 and
0 < r1 < r2, where 1A denotes the indicator function of the set A;

(ii) S is standard;
(iii) f is bounded away from zero on S, i.e. S = {f > a} for some a > 0.

Then for n large enough,

E
[
dλ(S, Ŝ)

]
6 c3h

d cv(S, r1h/2) exp
(
−c4nhd

)
+ ∆(S, r2h),

where c3 and c4 are positive constants. As a consequence, if we additionally
assume that

(iv) cv(∂S, r) 6 C/rd−1 for r small enough,

then

E
[
dλ(S, Ŝ)

]
6 c5 exp

(
−c4nhd

)
+ c6h.
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Hence, by taking the suitable sequence h = hn � (log n/n)1/d, one obtains
the convergence rate

E
[
dλ(S, Ŝ)

]
6 C

(
log n

n

)1/d

.

Proof of Theorem 4.9. We have

dλ(S, Ŝ) = λ({f̂ > αn, f = 0}) + λ({f > 0, f̂ 6 αn}).

From assumption (i), {f̂ > αn} ⊂ {f̂ > 0} ⊂ Sr2h. Therefore, the first term
of the right-hand side of (4.2) is easily bounded,

λ({f̂ > αn, f = 0}) 6 λ(Sr2h)− λ(S) = ∆(S, r2h).

To handle the second term of Section 4.2, let us consider a minimal covering
of S with balls Bj = B(xj , r1h/2), xj ∈ S, j ∈ {1, . . . , N} where N =
cv(S, r1h/2). Then

λ({f > 0, f̂ 6 αn}) = λ(S ∩ Ŝc) 6 λ
((
∪Nj=1Bj

)
∩ Ŝc

)
6

N∑
j=1

λ(Bj ∩ Ŝc).

Let

An,j =

{
1

nhd

n∑
i=1

1Bj (Xi) >
αn
c1

}
.

Observe that the event An,j is included in the event{Bj ⊂ Ŝ}. To see this,
assume that An,j occurs and take x ∈ Bj . Then

1

nhd

n∑
i=1

K

(
x−Xi

h

)
>

1

nhd

n∑
i=1

1B(x,r1h)(Xi) >
c1
nhd

n∑
i=1

1Bj (Xi) > αn,

where the second inequality uses the fact that Bj has diameter r1h. In other

words, if An,j occurs, then Bj ∩ Ŝc = ∅, so that

λ(Bj ∩ Ŝc) = λ(Bj ∩ Ŝc)1Ac
n,j
6 λ(Bj)1Ac

n,j
.

Hence, denoting ωd = λ(B(0, 1)), we have

E

 N∑
j=1

λ(Bj ∩ Ŝc)

 6 E

 N∑
j=1

1Ac
n,j
ωd

(
r1h

2

)d =
ωdr

d
1

2d
hd

N∑
j=1

P(Acn,j).

We now need to bound the P(Acn,j)’s from above. Let A be the standard-

ness constant of S, for a given maximal radius r0 > supn r1hn/2 (see Defi-
nition 4.7). As f > a > 0 on S, we have

pn,j := P(Xi ∈ Bj) =

∫
Bj

fdλ > aAωd

(
r1h

2

)d
:= a1h

d,
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which entails pn,j/2− αnhd/c1 > a1h
d/2− αnhd/c1 > 0 for n large enough,

since αn → 0. As a result, for n large enough,

P(Acn,j) = P

(
n∑
i=1

(1Bj (Xi)− pn,j) 6
nhdαn
c1

− npn,j

)

6 P

(
n∑
i=1

(1Bj (Xi)− pn,j) 6 −
npn,j

2

)
.

Now, using Bernstein’s inequality [BLM13, Corollary 13], we get

P(Acn,j) 6 2 exp

(
−3npn,j

28

)
.

Then, since pn,j > a1h
d, we get the first claim with c3 = 2ωdr

d
12−d, c4 =

3a1/28.
Using the extra assumption (iv), we get the second claim using Proposi-

tion 4.5 (i) and Lemma 4.6.

Plugin h = c7(log n/n)1/d for c7 > 1/(c4d)1/d yields the last expected loss
bound with C = c5 + c6c7. �

5. Further Sources

These notes mainly follow [CF97].

References
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